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Electronic states in a cylindrical quantum lens: Quantum chaos for decreasing system symmetry
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The eigenvalue problem in a cylindrical lens geometry is studied. Using a conformal mapping method, the
shape of the boundary and the Hamiltonian for a free particle are reduced to those of a two-dimensional
problem with circular symmetry. The wave functions are separated into two independent Hilbert subspaces due
to the inherent symmetry of the problem. For small geometry deformations, the solutions are found by a
specially designed perturbation approach. Comparisons between exact and perturbative solutions are made for
different lens parameters. As the symmetry of the lens is reduced, the characteristics of the spectrum and the
corresponding spatial properties of the wave functions are studied. Our results provide a family of billiard
geometries in which the electronic level spectrum is well characterized. In analyzing the level spacing distri-
bution of the spectrum, a strong deviation from the Poisson and Wigner limiting distributions is found as the
boundary geometry changes. This intermediate distribution is indicative of a mixed phase space, also revealed
explicitly in the classical Poincare´ maps we present.
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I. INTRODUCTION

Advances in materials fabrication and lithographic tec
niques have given us a variety of experimental syste
where electronic properties are tested in different envir
ments. Notable among these are the ‘‘quantum dots’’ wh
confine electrons to dimensions comparable to their cha
teristic wavelength@1,2#. Different approaches produce full
confined electronic systems with a discrete energy spectr
as well as quantum-wire-like geometries which have a c
tinuum component in one direction~but discrete otherwise
on the plane perpendicular to the given direction! @3#. Simi-
larly, effectively two-dimensional systems are produced
semiconductor heterojunctions, where electrons are stro
confined to a plane, while other potentials restrict their m
tion on the plane to a region with finite size and defin
shape. A number of micrometer and submicrometer tw
dimensional ‘‘stadia’’ have been studied as prototypes of
teresting electronic dynamical systems that reflect reg
and chaotic dynamics, depending on the specific bound
geometry@4,5#. The associated level spectra of these syste
have been shown to exhibit characteristic features reflec
the different degrees of integrability of the classical syst
~see Ref.@6# and references therein!.

Furthermore, as electronic transport and optical proper
are determined by the details of the energy spectrum,
important to know precisely the effects of geometrical co
finement on the electronic states. Simple geometries w
well-known spectra are few, while realistic systems w
complex shapes are not as well characterized. In this w
we undertake the study of a set of circular cap lens ge
etries that can be manufactured by a variety of different
proaches. It is particularly important that our method allo
the study of the corresponding spectrum as a function of h
‘‘flat’’ the circular cap lens is~i.e., the ratio of the radius to
1063-651X/2001/64~5!/056237~7!/$20.00 64 0562
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the height of the lens!. This study represents then a family o
shapes with well-characterized level spectra and propert

Another goal of the present paper is to study the appe
ance of chaos in a cylindrical quantum lens in terms of
geometric parameters, by studying the details of the le
spectrum spacings. We follow the general trends concern
the anticrossing between nearby energetic levels with
same symmetry, the increasing number of repulsion lev
when the problem transits from an integrable system t
chaotic one, and how for a small geometric perturbation
states can be well described by perturbation theory. We
that, as the lens becomes flatter, the energy level spa
distribution reflects a transition from a purely ‘‘integrable
system, described by a Poisson distribution function, to
that exhibits chaotic dynamics, and that, for large deform
tions of the semispherical~-circular! cap, the level statistics
reflects the complex character of a mixed phase space
what follows, we describe the geometry of an effective
two-dimensional spectrum, either because the confineme
the third direction is so extreme that its dynamics is ‘‘fr
zen’’ @4,5#, or because the system is a long cylindrical len
shaped ‘‘wire’’ @3#, and thus has a continuous spectru
along the long direction~and a discrete two-dimensiona
manifold along the orthogonal plane!.

The paper is organized as follows. Section II is devoted
presenting the cylindrical quantum lens geometry and
conformal transformation mapping method valid for th
problem. In Sec. III, we describe our approach to obtain
the level spectrum and corresponding eigenfunctions, b
by perturbation theory and by direct solution of the Sch¨-
dinger equation. Also, we analyze the chaotic behav
through the level spacing distribution and the lens geome
and correlate this behavior with Poincare´ surfaces of section
of the corresponding classical system. Finally, in Sec. IV,
discuss the consequences of this work.
©2001 The American Physical Society37-1
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II. CYLINDRICAL QUANTUM LENS

As described in the Introduction, a typical wirelike devi
produced in experiments is shown in Fig. 1~a!. The domain
of the system inr space is given by an infinite cylinder wit
cross sectional lens shape given by a heightb and width 2a,
as indicated. The states of a free carrier inside such dev
are described by the stationary Schro¨dinger equation

$¹ r
21k2%c~r !50, rPR3~a,b!, ~1!

whereR3(a,b) denotes the domain with boundaryL3(a,b)
obeying the boundary conditionc50 for rPL3(a,b), and
k252mE/\, whereE is the energy andm is the carrier ef-
fective mass. Taking advantage of the cylindrical symme
solutions of Eq.~1! can be cast as

c~r !5 f ~r!eikzz, ~2!

wherer is a two-dimensional~2D! vector andkz is the wave
vector component along thez direction. Using the above so
lution, Eq. ~1! becomes

$¹r
21 k̄2% f ~r!50, rPR2~a,b!, ~3!

where k̄25k22kz
2 is the corresponding eigenvalue forf (r)

in the 2D domainR2(a,b) with boundaryL2(a,b) @see Fig.
1~b!#. Solving Eq.~3! for such a 2D lens is clearly equivalen
to the solution of Eq.~1! because of Eq.~2!. We should also
notice that solutions of Eq.~3! yield theentire level spectrum
for a purelytwo-dimensional system, or one where thez-axis
confinement is so extreme that that degree of freedom
effectively frozen.

For the particular caseb5a, Eq. ~3! presents exact ana
lytical solutions due to the semicircular symmetry. Here,
boundary problem in Eq.~3! is reduced to the condition
f (a,u)50, f (r,p)50, and f (r,0)50. The functionsf (r)
in polar coordinates are given by products of integer-or
Bessel functions and sine functions,

f n,p
0 ~r,u!5

1

An,p
JnS mp

(n)

a
r D sin~nu!, ~4!

FIG. 1. ~a! System with cylindrical lens shape geometry wi
heightb and width 2a. ~b! Two-dimensional lens domainR2(a,b)
with boundaryL2(a,b).
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with n51,2, . . . ,p51,2, . . . ,wheremp
(n) is thepth zero of

the Bessel function of ordern. The normalization constan
An,p is given by

An,p5
aAp

A2
uJn11~mp

(n)!u, ~5!

and the eigenvaluesEn,p5\2(mp
(n))2/(2ma2).

The 2D quantum lens shape corresponds to the more
eral case whenb,a. Here, we need to fulfill Eq.~3! with the
conditionc50 over the boundaryL2(a,b) ~Dirichlet condi-
tion!. As this problem does not present a semicircular geo
etry, the wave functionsf n,p

0 given by Eq.~4! are no longer
the eigensolutions for this problem. To provide an analyti
solution, we will use a conformal mapping transform meth
for partial differential equations@7#. It is convenient to per-
form a conformal mapping to a circular domainR2(a,a)
with boundaryL2(a,a) where the set$ f n,p

0 % of eigenfunc-
tions ~4! forms an orthonormal basis on this domain. Hen
the mapping will enable us to solve the problem in a Hilb
space where an orthonormal basis$ f n,p

0 % is known. We trans-
form the 2D quantum lens domain and its boundary into
semicircular shape, so that the lens defined by the dom
Z5x2 izPR2(a,b) transforms into the semicircular doma
W5u2 ivPR2(a,a). This is accomplished by the transfo
mation

W~Z!5
2a

11@~a2Z!/a1Z#a
2a, a5

p/4

arctan~b/a!
,

~6!

in the W domain, with the parameter equationsu5r sinu,
v5r cosu, 0,r,a, and 0,u,p. Using Eq.~6! the eigen-
value problem~3! is transformed into,

¹ (u,v)
2 F~u,v !1Ja~u,v !k̄2F~u,v !50, ~u,v !PR2~a,a!,

~7!

with boundary condition

F~u,v !u(u,v)PL2(a,a)50. ~8!

Ja(u,v) is the Jacobian of the transformationW(Z), given
by

Ja~r ,u!5
16~1/a!2

R121/a@ f 1
1/a1 f 2

1/a12R1/2acos~f/a!#2
, ~9!

with the definitions

r 5r/a, f 6511r 262r sinu, R5 f 1 f 2 , ~10!

and

f5H arctanS 2r cosu

12r 2 D , r ,1

p/2, r 51.

~11!

The function Ja(u,v) contains the information about th
lens geometry, and it should be noted thata>1, sinceb
<a. For a51, Ja reduces to 1, as one would expect.
7-2
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ELECTRONIC STATES IN A CYLINDRICAL QUANTUM . . . PHYSICAL REVIEW E64 056237
The space of solutions where Eq.~7! is defined must ful-
fill the boundary condition~8!. Hence, the functionsF(u,v)
for a givenkz can be expanded in term of the set$ f n,p

0 % such
that

Fl5(
n,p

Cn,p
( l ) f n,p

0 ~r!, ~12!

where r5(r,u) is the polar parametrization of (u,v), as
described above, andl is a generic label for the new eigen
states of Eq.~7!, which is related to the (n,p) indices by
numbering the ordered Bessel zerosmp

(n) , or energy levels,
for the case ofa5b.

It can be shown that the functionsFl form a complete se
of orthonormal functions $Fl% with weighting factor
Ja(r,u), fulfilling the condition@8#

E
R2(a,a)

JaFl 8
* Fld

2r5d l ,l 8 . ~13!

The latter implies the following normalization condition fo
the expansion coefficientsCn,p

( l ) :

(
n8,p8;n,p

Cn,p
( l ) Cn8,p8

( l ) ^npuJa~r,u!un8p8&51. ~14!

In the following, two different methods for calculating eige
values and eigenfunctions of Eq.~7! are presented, and the
results analyzed.

III. ENERGY LEVELS AND WAVE FUNCTIONS

A. Exact diagonalization

The variational method is a powerful tool to solve t
eigenvalue problem given by Eqs.~7! and ~8!. The coeffi-
cientsCn,p

( l ) ~wave functions! and the corresponding eigenva
ues can be obtained by direct substitution of expansion~12!
into Eq. ~7!, yielding

(
n,p

Cn,p
( l ) f n,p

0 ~r,u!S Ja~r,u!2
~mp

(n)!2

k̄2 D 50. ~15!

In matrix notation, the above equation can be cast as

@~k0!21J2g1#C50, ~16!

whereg51/k̄2, ks,s8
0

5(mp
(n))2ds,s8 , 1 is the unit matrix, and

Js,s85^suJa(r,u)us8&, wheres represents the set of quantu
numbers (n,p), taken in increasing order ofmp

(n) . The eigen-
valuesg and eigenvectorsC are then obtained from the sec
lar equation

detu~k0!21J2g1u50. ~17!

To solve this equation we have used a numerical diago
ization procedure in a finite truncated basis off s

0 . The first
11 energy levelsEl as a function ofb/a obtained from Eq.
~17! are shown in Fig. 2~a!. It can be seen that the energ
increases with decreasing ratiob/a, an effect that is dictated
by the fact that the transformation~6! is not area preserving
@9#, and due physically to a stronger confinement geome
05623
l-

y.

It is possible to show that for small values ofb/a the func-
tion ^suJa(r,u)us8& is proportional to (b/a)22.

An important aspect that must be taken into account is
symmetry of the equation of motion~16!. The matrix
^suJa(r,u)us8& couples states fulfilling the selection ruleun
2n8u5 even number. Hence, the symmetry present in
operator~7! allows the separation of the eigenfunctions in
two Hilbert subspaces, which we will denote bySandA. The
full Hilbert space is a combination of even (n-odd! and odd
(n-even! functions for the subspacesS and A, respectively.
As the given symmetry remains valid for anyb/a value, we
will label the states forb/a,1 with the same quantum num
bers (n,p) as we use forb5a. In Fig. 2~a! we see clearly the
level crossing between states with the different symmetrieS
andA. An example of such a crossing is found atb/a'0.7,
where the levels (1,2) and (4,1) fully cross. On the oth
hand, nearby levels belonging to thesameHilbert subspace

FIG. 2. ~a! The first 11 energy levelsEl obtained from Eq.~17!
as a function of the lens geometry parameterb/a. ~b! Comparison
between second order perturbation theory~dashed lines! and the
variational method~solid lines!, as a function of the ratiob/a.
States are labeled atb/a51 ~semicircular boundary! by the quan-
tum numbers (n,p).
7-3
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C. TRALLERO-HERREROet al. PHYSICAL REVIEW E 64 056237
present an anticrossing at certain values ofb/a, as observed
between the levels~1,2! and ~5,1! at b/a'0.4, and more
clearly between levels~1,3! and ~7,1! at b/a'0.7. One
should notice that the results presented have been achi
using matrices of size at least 6003600 and typically larger.
The results are fully converged to high numerical accura

Figure 3 shows contour plots for the probability dens
uFl u2 for different energy levels andb/a values. In Figs.
3~a!–3~c! the ground state~1,1! extends increasingly over th
entire domain as the ratiob/a decreases. Figures 3~d!–3~f!,
on the other hand, represent the contour plots for the s
labeled with quantum numbers~1,2! at b/a51. Similarly,
Figs. 3~g!–3~i! correspond to the energy level with labe
~4,1! at b/a51. In Figs. 3~d!–3~f! we see that the ‘‘flatter’’
lens geometry has a stronger effect on the probability den
uFl u2 for the (1,2) level, provoking its rapid variation as
function of the decreasing ratiob/a. Otherwise, as shown in
Figs. 3~g!–3~i!, a smooth dependence on theb/a ratio is
observed for theuFl u2 function of some states, such as~4,1!
shown here. This different behavior is explained by its e
ergy dependence@see Fig. 2~a!#, as the state (1,2) goe
higher in energy than (4,1) and experiences a stronger re
sion from the boundary surface defining the lens. This str
ger repulsion results in the nodal structure shown in Fig. 3~f!.

B. Perturbation theory

The coefficientsCn,p
( l ) in Eq. ~12! and the eigenvaluesk̄2

can be obtained by perturbation theory ifb'a, i.e.,a→1. In
this case, the 2D lens represents a perturbation from
semicircular geometry. In other words, the operator~7! can
be rewritten in the form

~Ho1Hp!F~u,v !50, ~18!

with

Ho~u,v !5¹ (u,v)
2 1 k̄2, ~19!

FIG. 3. Contour plots of the probability densityuFl u2 for (1,1),
(1,2), and (4,1) states and different values of theb/a ratio. The
darker filling color indicates stronger spatial localization of t
state. Size of lens has been rescaled in all panels.
05623
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Hp~u,v !5 k̄2@Ja~u,v !21#, ~20!

where the operatorHp vanishes whena→1 and can be con-
sidered as a small perturbation operator. In order to find
solution of Eq.~18! as a function of the perturbationHp , we
use a modified Rayleigh-Schro¨dinger perturbation theory
We note that the operatorHp depends on the eigenvaluek̄2,
and as such requires a somewhat different approach from
typical perturbation method used in quantum mechan
Substituting Eq.~12! in Eq. ~18! we get

@~ k̄22ko
2!1^suHp~ k̄2!us&#Cs

( l )1 (
s8Þs

^suHp~ k̄2!us8&Cs8
( l )

50,

~21!

where we have used a unique quantum numbers to label the
(n,p) states as previously mentioned. We can represent
coefficientsCs and the eigenvaluesk̄2 in a power series of
the small parameterl5Ja21. From Eq.~21! we obtain up
to second order inl that the eigenvaluesk̄2 are given by

k̄l
25~12l l ,l !~kl ,l

0 !21
l l ,l

2 ~kl ,l
0 !2

2

1 (
l 8Þ l

~kl ,l
0 !2

~kl ,l
0 !22~kl 8,l 8

0
!2

~l l ,l 8!
2, l 51,2, . . . ,

~22!

and the wave functions up to first order are given by

Fl5 f l
02

l l ,l

2
f l

02 (
l 8Þ l

~kl ,l
0 !2

~kl ,l
0 !22~kl 8,l 8

0
!2

l l ,l 8 f l 8
0 , ~23!

where

l l ,l 85^ l uJa~r,u!21u l 8&. ~24!

A comparison for the first nine energy levels between sec
order perturbation theory~dashed lines!, as expressed in Eq
~22!, and the exact solution~solid lines! is shown in Fig.
2~b!. We can see an excellent agreement between the
methods forb/a.0.9 ~at least for these levels!, while for the
first three levels the agreement remains acceptable u
b/a'0.85. It is clear that the perturbationJa21 has more
influence on the upper levels than in the lower ones, as
would anticipate, and that the perturbation due to the l
geometry is stronger as the ratiob/a decreases. For the wav
functions calculated from Eq.~23!, we find that the agree
ment with the exact solutions is excellent, exhibiting t
same behavior as that discussed for the energy levels.

C. Onset of chaotic signatures

In Fig. 3 we should also notice the localization of a
states toward the plane, leading to a strong change in
nodal structure of the wave function, as the ratiob/a de-
creases. The in-plane localization effect is highly correla
with the transition to chaos@9#, as will be described below
Another aspect emerges from the energy spectrum a
strong signature of quantum chaos, i.e., the level repulsio
avoided crossing between levels with the same symmetry
7-4
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ELECTRONIC STATES IN A CYLINDRICAL QUANTUM . . . PHYSICAL REVIEW E64 056237
was discussed previously. To clarify this behavior, we p
ceed with a study of the level spacing of the energy spect
in terms of the ratiob/a. This analysis is commonly used t
characterize the spectrum, and has been utilized as an
cator of chaotic behavior in a system@6,9,10#. We analyze
the probability densityP(n) of finding an energy leve
~nearest-neighbor! spacingn in a fixed intervaldn, and nor-
malized by

E
0

nmax
P~n!dn51, ~25!

wherenmax is the maximum level spacing and the variablen
in units of E05\2/(2ma2) is given by

n i5~Ei2Ei 21!/E0 . ~26!

Since we have to deal with a bounded and finite subset of
energy spectrum where the infinitesimaldn becomes a dis-
crete set of numbers,dn→Dn, the distributionP(n) needs
to be represented by a histogram functionP(Dn). Although
this has been the most commonly used procedure, we fin
is preferable to compute the integrated or cumulative pr
ability function @6,11#

I ~n!5E
0

n

P~n8!dn8. ~27!

The main advantage of working with Eq.~27! is that the
functionI (n) does not depend on the specific binning used
create the histograms ofP(Dn). Either of these functions
I (n) or P(n), is compared with limiting distribution func
tions @12–16#. A typically used distribution is the Brody
function @12#

Pa~n!5~11a!banaexp~2bana11!, ~28!

derived empirically to interpolate between the known lim
studied in random matrix theory~RMT! by Wigner@6,17#. In
Eq. ~28!, a is a phenomenological parameter,b is given by

ba5@G„1/~11a!11…#11a, ~29!

to provide proper normalization, andG(x) is the Gamma
function @18#. For a50, Pa(n) is nothing but the Poisson
distribution typical of classically integrable systems, wh
for a51 it reduces to the Wigner distribution obtained fro
the Gaussian orthogonal ensembles of RMT@6,12#. In Fig.
4~a! the integrated probability functionI (n) is shown for the
case of eigenstates with even symmetry, as a function
n/^n& for different values of the lens deformation parame
b/a, and wherên& is the mean level spacing. For the sake
comparison, the Poisson and Brody distributions are a
shown.

As stated above, if we are dealing with a semicircu
geometry (b/a51), the energy levels are given by the zer
of the Bessel function, and their spacing distribution funct
is well described by the Poisson distribution, as expected
an integrable system@9#. For b/a50.8 the system is no
longer integrable andI (n) can be fitted reasonably well b
the distribution function~28!, with a50.28. For a flatter
05623
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lens, b/a50.7 and lower, the integrated probability~27!
clearly departs from the monotonic behavior predicted by
Brody distribution. This can be seen in Fig. 4~b! where the
normalized level spacing histogramP(Dn) for b/a50.3 is
shown and the distribution obtained is obviously neith
Poisson-like nor fully Wigner-like. As theb/a ratio de-
creases, a further spreading of the distribution functionP(n)
is obtained, with a clear change in its characteristics. I
remarkable thatP(n50)Þ0 for strong deformations,b/a
!1, indicating the possibility of a mixed phase space~see
below!.

To further explore the properties of the spectrum, the n
malized functionP(Dn) is also compared with the Berry
Robnik distribution~BRD! proposed for mixed phase spac
systems@13,16#, and which for the particular case of a two
component phase space has the form

FIG. 4. ~a! Integrated probability as a function of normalize
level spacing for a cylindrical quantum lens and values of the ra
b/a50.8, 0.4, and 0.3. The Poisson and Brody distributions are
indicated.~b! Normalized level spacing histogram forb/a50.3. For
comparison, the Berry-Robnik, Poisson, and Wigner functions
also plotted.
7-5
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C. TRALLERO-HERREROet al. PHYSICAL REVIEW E 64 056237
P2~n,r1!5r1
2exp~2r1n!erfcSAp

2
r2n D 1S 2r1r2

1
1

2
pr2

3n DexpS 2r1n2
1

4
pr2

2n2D , ~30!

where erfc(x) is the complementary error function andr1
andr2 are the Liouville measures for the regular and chao
regions of the phase space on the Poincare´ surface of section
~PSOS!, respectively. These parameters fulfill the conditio

r11r251, ~31!

since the phase space volume is preserved. In Fig. 4~b!, the
BRD function for several values ofr1 is shown. As can be
seen, a certain degree of agreement is reached forr150.6,
mainly in then'0 region, since bothP andP2 are finite in
this region. We should also comment that the integra
probability functionI 2(n) obtained from integrating the dis
tribution P2(n,r1) fits well the results of Fig. 4~a! ~not
shown! for b/a50.8 with r150.6, while poorer or no agre
ment is obtained for ratiosb/a smaller than 0.7.

Similar results showing a strong departure from RM
have been reported in@19# for electrons interacting via a
Coulomb potential in a semiconductor quantum dot in
external magnetic field. Although in many systems t
Pa(n) distribution function is well described by the phenom
enological power law of the Brody function, this is not a
ways the appropriate description for all parameter valu
The nature of the level repulsion due to the confinemen
the lens geometry appears not to follow this simple inter
lation scheme in general, especially as the ratiob/a de-
creases. However, the interpolation works quite well for
case of small deformations of the lens from the semispher
~-circular! shape, as can be seen in Fig. 4~a! for b/a50.8;
our calculations show that this behavior is indeed exhibi
for both families of distributions considered, as long asb/a
.0.7. In the case of strong departures from the semicirc
geometry, a more complex description of the energy a
crossings is needed. Other phenomenological distribu
functions have been proposed by Izrailev and by Casatiet al.
for the level spacing@20,21#. All of these have the form
P(n)}n t, wheret is a model parameter. This does not agr
with our results, since we haveP(n50)Þ0. As reported in
the literature, this more complex distribution is indicative
a mixed phase space, where different regions are classi
integrable or quasiperiodic, while others are chaotic. Thi
the case of Fig. 4 forb/a,1 where the distribution would
never reachP(n50)50, since the regular component has
nonzero probability for then→0 spacing in agreement wit
the Berry-Robnik scenario@13,16#. In order to elucidate this
behavior explicitly for different lens geometries, we analy
below the classical dynamics asb/a decreases from unity.

Figure 5 shows Poincare´ sections~PSOS’s! for the lens
billiard in different projections. These plots are generated
30 initial conditions near periodic orbits in the nondeform
geometry (b/a51) with a constant velocity modulus; a
trajectories are followed up for 5000 rebounds at the bou
aries. As can be seen in Fig. 5~b! there is a clear regula
motion for the semicircular lens geometry, while for a sm
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deformation (b/a50.9) a great deal of mixing alread
emerges. A lens strongly deformed (b/a50.3), however,
presents more of a regular pattern located mainly at the c
ter, together with the chaotic region atx/a;61. In the case
of the PSOSVX vs X, Fig. 5~b!, the picture is quite similar
for small deformations but quite different for a flatter le
shape. Here, it is noted that for deformations as small
b/a50.7 all the classical periodic orbits are broken and
extremely deformed lens geometries (b/a50.3) wide cha-
otic zones appear. Nevertheless, it is clear that a great de
complexity exists forb/a,1. The resulting mixed phas
space was anticipated from the level spacing analysis in
quantum system above, and an estimate of the paramete
the BRD function is not far fromr1.0.6 for b/a50.8. For
smallerb/a values, however, the evaluation ofr1 is not as
clear, and requires more detailed studies which we plan
present elsewhere. We should also mention, however,

FIG. 5. ~a! Poincare´ surface of sections for a quantum lens b
liard and values of the ratiob/a51, 0.9, 0.7, and 0.3.~a! VY ve-
locity component versus normalized lengthY/b at X50 and VX

.0. ~b! VX velocity component versus normalized lengthX/a at
Y50 andVY.0. The velocities are given in arbitrary units whe
VX

21VY
252.
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other systems with complex geometry do also exhibit mix
space behavior@22#.

IV. CONCLUSIONS

We have formally obtained analytical solutions for t
energy spectra and wave functions of a 2D or cylindrical le
geometry. The eigenenergies and eigenfunctions of a par
moving in this geometry are given in terms of the lens p
rameterb/a which characterizes the lens deformation w
respect to the semicircular case. This set of lens-cap sh
represents stadia for the dynamics of mesoscopic electr
We have also provided a complete set of orthogonal w
functions to describe a Dirichlet problem to character
physical problems within the lens boundary, and it has b
shown that the space of solutions is divided into two Hilb
subspaces with well-defined symmetry. We found that
small deformations (b/a.0.9) a modified Rayleigh-
Schrödinger perturbation method provides accurate soluti
for the lower eigenstates in the quantum lens. For sma
values of the ratiob/a, the eigenstates have to be describ
by the exact solution given by Eq.~16!. The reported ener
gies in units ofE0 @Fig. 2~a!# have a universal character i
terms of the parameterb/a and, due to the breaking of cir
cular symmetry by the lens deformation, the energy state
a given Hilbert subspace present anticrossings. In connec
with this behavior, the probability density shows a tenden
to localize the particle to the bottom region of the lens, a
its nodal structure is strongly modified as the height of
lens decreases. A strong mixing of states occurs near
.S
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.
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crossing points, and the splitting increases asb/a decreases,
while the system moves from fully integrable to a nonin
grable dynamical problem, i.e., to a quantum chaotic beh
ior in the sense of its level spacing statistics. In the case
semicircular geometry, the level spacing distribution is ch
acterized by a Poisson distribution and follows the Bro
function continuously for small lens deformations within th
region 0.7,b/a,1 ~the exponential parametera ranges be-
tween 0 and 0.28!. We have found that the level spacin
distribution departs more strongly from the Poisson a
Wigner limits as the 2D lens becomes flatter, and the tw
component Berry-Robnik distribution function or the ph
nomenological power law suggested in RMT fail to ful
describe the level repulsion. This complex behavior of
level spacing distribution is characteristic of systems w
classically mixed dynamics, and this is clearly the case
the lens, as shown in the Poincare´ sections presented in Fig
5. Notice that the appearance of quantum chaos in the q
tum lens as a consequence of level anticrossing and
changing nodal structure of the wave functions is charac
ized by the single parameterb/a that measures the len
deformation.
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